Jump to content

41 (number)

From Wikipedia, the free encyclopedia
(Redirected from Forty-one)
← 40 41 42 →
Cardinalforty-one
Ordinal41st
(forty-first)
Factorizationprime
Prime13th
Divisors1, 41
Greek numeralΜΑ´
Roman numeralXLI, xli
Binary1010012
Ternary11123
Senary1056
Octal518
Duodecimal3512
Hexadecimal2916

41 (forty-one) is the natural number following 40 and preceding 42.

In mathematics

[edit]

41 is:

In other fields

[edit]

References

[edit]
  1. ^ "Sloane's A007703 : Regular primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^ "Sloane's A104272 : a(n) is the smallest number such that if x >= a(n), then pi(x) - pi(x/2) >= n, where pi(x) is the number of primes <= x". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^ "Sloane's A092101 : Harmonic primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^ "Sloane's A028388 : prime(n) such that prime(n)^2 > prime(n-i)*prime(n+i) for all 1 <= i <= n-1". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^ "Sloane's A002267 : The 15 supersingular primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
  6. ^ "Sloane's A088165 : NSW primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
  7. ^ "Sloane's A080076 : Proth primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
  8. ^ Sloane, N. J. A. (ed.). "Sequence A001844 (Centered square numbers: a(n) is 2*n*(n+1)+1. Sums of two consecutive squares. Also, consider all Pythagorean triples (X, Y, Z equal to Y+1) ordered by increasing Z; then sequence gives Z values.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-02-09.
  9. ^ Sloane, N. J. A. (ed.). "Sequence A000668 (Mersenne primes (primes of the form 2^n - 1).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-02-09.
  10. ^ "Sloane's A013646: Least m such that continued fraction for sqrt(m) has period n". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-03-18.
  11. ^ "Reference 1". Archived from the original on 2008-05-31. Retrieved 2008-06-13.
  12. ^ "Reference 2". Archived from the original on 2007-11-30. Retrieved 2008-06-13.